
AD-A240 928 -

NRL MEMORANDUM REPORT NO. 6894

MODELING OF DYNAMIC BIPOLAR PLASMA SHEATHS

J.M. Grossmann, S.B. Swanekamp, and P.F. Ottinger

Plasma Physics Division
Naval Research Laboratory

Washington, D.C. 20375-5000

August 20, 1991

SEP2 5 121

91-11441

91 9 24 091



fo'ni Approved
RE.-;PO,1"O' 00'CLNIENTA TtON PAGE OME 4 7 -oe

,, E ? -6 "1 ,,:.1t

T REFOftl TYPE AND DATES COVERED

29 Apujt 1991 Interim 10/1/90 - 9/30/91
Z u .,LE 0 777Ui7E S. FUN DING NUMBERS

MODELING OF DYNAMIC BIPOLAR PLASMA SHEATBS" 47-3209-0-1

J.M. Grossmann
S.B. Swanekaup
]P.F. Ottinger

Pr!0 8. PERFORNIVIC 0PGMtJIZATf0N

Code 4770
Plasma Physics Division -NRL Memorandum
Naval Research Laboratory Report No. 6894
Washington, DC 20375-5000

Q)FP fi, trOP U4,,%i;;O -FI': z.GCC'iY ;: ,f(5) -,O 3CD:_'x:,(.,S) 10 € C 0q ,6 t.O,"'TORI: O

AI OW.' nPORT ,~4~' Office of Naval Research
1"

800 N. Quincy Street

Arlington, VA 22217-5000

I,_ :L::'I,' :,,-'V NOTES

This is an extended version of a paper already published in Physics of Fluids B
(NiL 4770-180 dtd 6/13/91; NRL/JO-4770-180-91-0038/1-1221-1650).

_12b. 015RIS LITlOD CODE

Approved for public release, distribution is unlimite,.

1-: !'The.(behavroof a one dimensional plasma slaeath is described inregimes where the sheath is not in equilibrium ,,ecause it carries
current densities that are either time dependent, or larger than the
bipolar Child-Langmuir level determined from tbh injected ion flux.
Earlier models of dynamic bipolar sheaths assumfld that ions and
electrons evolve in a series of quasi-equilibria. In addition, sheath
growth was described by the equation Zenoxs = Iji! -Zenouo, where xs is!
the velocity of the sheath edge, ji is the ion cuwrent density, noUo is:
the injected ion flux density, and Ze is the ion charge. In this
paper, a generalization of the bipolar electron-to-ion current density
ratio formula is derived to study regimes where ions are not in
equilibrium. A generalization of the above sheath growth equation is
also developed which is consistent with the ion continuity equation
and which reveals new physics of sheath behavior associated with the
emitted electrons and their evolution. Based on these findings, two
new models of dynamic bipolar sheaths are developed. Larger sheath
sizes and potentials than those of earlier models are found. In
certain regimes, explosive sheath growth is predicted.

Plasma Sheaths I 63
Inductive Storage ,. ii ,,
Diode Physics

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Same as Report



GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablity Statement.
Denote public availability or limitation. Cite

Block 2. Report Date, Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10 DOD - See DoDD 5230.24, "Distribution
Jun 87 - 30 Jun 88). Statements on Technical

Documents."
Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reportsnumber(s), and work unit number(s). Use the NASA - NASA - Leave blankfoNASA-Leaveablank
following labels: NTIS - NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract. Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.Block 6. Author(s). Name(s) of person(s)

responsible for writing the report, performing Block 14. Subject Terms, Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Address(e.L Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Relort code (NTIS only).
Number, Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. Sponsorina/Monitoring Agency Regulations (i.e., UNCLASSIFIED). If form
Names(s) andAddress(es). Sef-explanatory. contains classified information, stamp

Block 10. Sonsoring/Monitoring Agency. classification on the top and bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes, Enter Block 20. Limitation of Abstract. This block
infck.oronr otincluded es. Iter ucmust be completed to assign a limitation to theinformation not included elsewhere such as: abstract. Enter either UL (unlimited) or SAR
Prepared in cooperation with...; Trans. of .... To as r t) Ant r its o s
be published in .... When a report is revised, (same as report). An entry in this block is
include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)



NRL Memorandum Report No. 6894

MODELING OF DYNAMIC BIPOLAR PLASMA SHEATHS
J.M. Grossmann, S.B. Swanekamp, and P.F. Ottinger

Table of Contents

Abstract .............................................. 1

I. Introduction .......................................... 2

II. An Equation for Dynamic Bipolar Sheath Growth ......... 8

III. A Generalized Current Density Relationship ............ 11

IV. Child-Langmuir Equation for Dynamic Sheaths ........... 18

V. The Modified Bipolar Model ............................ 20

VI. Dynamic Sheath Opening Based on Numerical Simulation..23

VII. Results ............................................... 24

VIII. Conclusions ........................................... 33

IX. Acknowledgements ...................................... 35

X. References ............................................ 35



Modeling of Dynamic Bipolar Plasma Sheaths

J.M. Grossmann, S.B. Swanekamp*, and P.F. Ottinger

Abstract

The behavior of a one dimensional plasma sheath is described in regimes where the

sheath is not in equilibrium because it carries current densities that are either time

dependent, or larger than the bipolar Child-Langmuir level determined from the injected

ion flux. Earlier models of dynamic bipolar sheaths assumed that ions and electrons

evolve in a series of quasi-equilibria. In addition, sheath growth was described by the

equation Zen.k, =1j11-Zen. u., where x, is the velocity of the sheath edge, ji is the ion

current density, nouo is the injected ion flux density, and Ze is the ion charge. In this

paper, a generalization of the bipolar electron-to-ion current density ratio formula is

derived to study regimes where ions are not in equilibrium. A generalization of the

above sheath growth equation is also developed which is consistent with the ion

continuity equation and which reveals new physics of sheath behavior associated with the

emitted electrons and their evolution. Based on these findings, two new models of

dynamic bipolar sheaths are developed. Larger sheath sizes and potentials than those of

earlier models are found. In certain regimes, explosive sheath growth is predicted.
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I. Introduction

A plasma sheath is a transition region between a charge neutral plasma and a

physical boundary where local charge neutrality no longer applies. These sheaths

develop in any device where plasma is in contact with physical boundaries. As a result,

the equilibrium properties of these sheaths have been studied thoroughly and are well

understood. Examples of equilibrium sheaths include the Bohm sheath' and space charge

limited flow2.

Less well understood is the dynamic behavior of plasma sheaths in response to

externally applied voltages or currents. Dynamic plasma sheaths have been studied for a

wide variety of applications. These applications include plasma probes 3, vacuum

discharge tubes4.5, fusion reactors6,7, rf plasma sources for thin-film fabrication

technology8, high voltage power systems for space applications 9, and pulsed power

applications of plasma filled diodes (PFD)' ° and plasma erosion opening switches

(PEOS)" . Motivation for the present work is provided by the PEOS and the PFD which

are projected to be key components of inductive storage pulsed power systems.

An early reference to dynamic ion sheaths is Koch 12 who proposed that a dynamic

cathode sheath develops in response to an external voltage. In this model the time rate of

change of the sheath size is proportional to the difference between the ion current

demanded by the Child-Langmuir equation' 3 and the ion current available from the

plasma. A rigorous proof of this model for ion sheaths was provided by Sandert who

showed that the model is valid in the ibnit that the sheath growth is slow enough for the

ions to respond. These ideas were expanded upon by Andrews and Varey5 and by

Widner, Alexeff, Jones, and Lonngren 14 to consider situations for which sheath dynamics

occur on time scales faster than the ions can respond. Since the applied electric field was

too low to st.mulate explosive electron emission (E<100 kV/cm 2) in these experiments,
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none of these early models considered electron emission into the sheath from the

cathode. In the PEOS and PFD, however, field strengths in the sheath can be sufficient

to achieve space-charge limited emission of electrons from the cathode. The first

reference to dynamic bipolar sheaths which accounts for emitted electrons as well as ions

is the paper by Miller, Poukey, and Wright' ° . In this model, the ion current density in

Koch's ion sheath model is replaced with a bipolar flow model. This sheath growth

model was later modified by Mendel and Goldstein to include relativistic effects'5 .

Although these models have provided qualitative agreement with experiments in certain

regimes, a rigorous proof of these formulas for dynamic bipolar sheaths has not been

found in the literature. The development of such a theory is the intent of this paper.

The problem treated in this paper describes a dynamic bipolar sheath which forms

at a one dimensional planar emitting electrode immersed in a fully ionized plasma. For

simplicity, the plasma is assumed to have a uniform ion density, no, and an initial flow

velocity, -u., where negative velocity signifies mo:ion toward the cathode. High electron

currents can produce a self-magnetic field that causes bending of the beam electron

trajectories making the current flow pattern two dimensional. In the present work it is

assumed that the self-magnetic field does not cause excessive bending of the electron

orbits so that a one dimensional treatment is adequate. Physically, this might correspond

to a situation in which beam currents are smaller than the critical current for beam

pinching or magnetic insulation 16, or an external magnetic field is present to inhibit

transverse beam motion.

A schematic of the one dimensional dynamic plasma sheath is shown in Fig. 1. The

bipolar sheath is one in which electrons emitted from the cathode and ions drawn from

the plasma are accelerated in the large sheath electric fields. It is further assumed that

the voltage drop across the sheath is large compared with the plasma electron

temperature, so that a sharp boundary exists between the neutral plasma, where electric
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fields are small, and the non-neutral sheath region where large accelerating fields are

present. Motion of the sheath/plasma boundary is provided by the acceleration of plasma

electrons toward the anode. This acceleration is produced by an electric field which

develops at the sheath edge either when current from the external circuit exceeds that

which can be supported by the equilibrium bipolar sheath or when the current increases

in time. As a result, plasma electrons leave the region of space near the sheath edge and

redistribute themselves in the plasma to shield the sheath electric field from the bulk

plasma. This process continues until the electric field at the newly formed sheath/plasma

boundary is zero. Therefore, the net result of the plasma electron motion is to provide an

additional ion flux into the sheati by uncovering ions as the sheath/plasma boundary

recedes. These ions provide the additional positive charge required to ensure that the net

sheath charge is zero so that the electric field vanishes at the sheath/plasma boundary. As

an additional assumption, electron emission at the cathode is assumed to be space charge

limited so that the electric field vanishes there as well.

In this paper, plasma electron dynamics are treated by a sequence of quasi-

equilibrium states characterized by a density which is uniform inside the plasma and zero

in the sheath. This uniform plasma electron density continually adjusts itself to maintain

charge neutrality as beam electrons enter the plasma. Therefore, it is assumed that the

net charge density from plasma ions, plasma electrons, and beam electrons is zero inside

the plasma. Outside the scope of this paper is the mechanism by which this neutrality is

maintained. Beam electrons, which are accelerated across the entire sheath rather than

just near the sheath edge, generally obtain much higher velocities than the slower plasma

electrons. The detailed interactions between beam electrons and plasma electrons, such

as streaming instabilities are ignored in the present analysis, but have been treated

elsewhere' 7. Therefore, the treatment of plasma electrons is adequate when sheath
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dynamics occur on P time scale slow enough for plasma electrons to equilibrate and when

beam-plasma interactions are weak.

Before presenting a detailed analysis of the dynamic plasma sheath, limitations of

previous models are illustrated by examining a model which was used to describe PFD

experiments' ° . In this treatment, charged particle flow in the sheath was modeled by the

non-relativistic Child-Langmuir bipolar space-charge limited formulas

Ib = 1.86(4co /9)(2e me)112 V.312 / X, (1)

1ijI = (Zm. / mi )112 1j, (2)

where ji and Jb are the ion and beam electron current densities, x. is the position of the

sheath/plasma boundary, V, is the potential drop across the sheath, Ze is the ion charge

state, mi and m. are the ion and electron masses, and C. is the permittivity of free space in

MKS units. Throughout this paper the subscripts i, b, and e will refer to ions, emitted

beam electrons, and plasma electrons respectively. In Eqs. (1) and (2), absolute value

signs have been used for the current densities since they are negative in the coordinate

system depicted in Fig. I. Strictly speaking, Eqs. (1) and (2) describe equilibrium ion

and electron flow in a static sheath and are based on the assumptions of energy

conservation and uniform current density across the sheath for both species. These

equations can also be used to describe non-equilibrium sheaths as a sequence of quasi-

steady states provided changes in the sheath electric field are slow enough for both ion;

and electrons to adjust.

As an illustration of the limitations of Eqs. (1) and (2), consider a dynamic sheath

in which variations in the electric field occur on a time scale faster than the ions can

respond. This situation can arise when the ion mass is very large or a large potential

suddenly appears across the sheath causing the plasma electrons to quickly recede out of
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the sheath. In either case, the assumptions of ion energy conservation and uniform ion

current density do not apply. Therefore, the ion charge density can be substantially

different from that predicted by the Child-Langmuir equations. In fact, if changes in the

sheath electric field occur so fast that ions do not move appreciably, a uniform

distribution of ion charge is more appropriate. The uniform ion density case has been

referred to as the ion matrix limit in the literature on ion sheaths5 .

If ri and r, are the ion and electron equilibration times, and r, is the time scale for

changes in the sheath electric field, then the dynamic behavior of bipolar sheaths can be

divided into three different regimes: a slow regime characterized by r,<<rj<<'r, where

the assumptions of energy conservation and uniform current density are valid for both

species and a bipolar model is appropriate, a moderately fast regime characterized by

;r<<,r<< where the assumptions of energy conservation and uniform current density

are appropriate for electrons but not for ions, and a fast regime characterized by

;'r,<< r where the assumptions of energy conservation and uniform current density

are violated for both ions and electrons. Since electron dynamics are treated by a

sequence of quasi-steady states, the models developed in this paper do not adequately

describe sheath dynamics in the fast regime. This is not considered too restrictive for the

purposes of this work since such fast time scales are not expected in most experiments of

interest. However, with the PEOS and PFD it is possible for sheath fields to change on a

time scale comparable with the ion time scale. In this paper a model is developed which

extends previous treatments of dynamic bipolar sheaths to include the situation where

sheath dynamics evolves fast on the ion time scale but slow on the electron time scale.

Returning to the examination of dynamic bipolar sheath models, the sheath opening

equation used in previous models 1°,15 was given as

j I = Zenouo +Zen ,k, (3)
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where i. is the velocity of the sheath edge. In Sec. I of this paper an exact version of

Eq. (3) for dynamic bipolar sheaths is derived. In contrast to Eq. (3), the exact version

fully obeys the ion continuity equation, and contains two correction terms arising from

emitted electrons that are of importance in regimes of practical interest.

In this paper, a one-dimensional analytical treatment and numerical simulations of

dynamic bipolar sheaths are presented. This new analysis includes a treatment of ion

dynamics (non-equilibrium effects), electron emission and charge accumulation in the

sheath, relativistic effects, and an initial ion injection velocity. In Sec. I1, an equation

describing the motion of the sheath/plasma boundary is presented. In Sec. III, an ion

hydrodynamic approach is used to assess the role of ion dynamics on plasma sheaths and

to develop a generalization of Eq. (2). In Sec. IV, complexities associated with Eq. (1)

are discussed. Based on these discussions, an improved analytic model for sheath growth

is developed in Sec. V. Although this analytic model is an improvement over previous

models in its more accurate treatment of electron charge accumulation in the sheath, it is

not adequate in regimes where ion dynamics are important because it treats ions by a

sequence of quasi-steady states. A numerical model of the dynamic plasma sheath based

on the particle-in-cell technique (PIC) is developed in Sec. VI. This numerical method

features a PIC treatment of ions coupled with a quasi-steady-state treatment of electrons.

In addition to including the new effects introduced in Secs. II - IV, the numerical model

resolves ion dynamics and fully conforms to the ion continuity equation. The results of

the models of Secs. V and VI are presented in Sec. VII and compared with ones used by

previous authors. This comparison explicitly shows the limitations of models that

neglect the emitted electron charge density and its evolution. It also points out the role of

ion non-equilibrium effects and demonstrates regimes of interest where analytic models

do not provide an adequate description of dynamic plasma sheaths. Finally, in Sec. VIII,

7



important conclusions of the present work are stressed and suggestions for future work

are discussed.

HI. An Equation for Dynamic Bipolar Sheath Growth

In this section an exact equation which governs the sheath size in one dimensional

dynamic bipolar sheaths is presented. The equation for sheath growth can be derived

from the continuity equation which is given by

- -+ -=0, (4)

and Gauss's law,

E -aE = (5)
,ax

where p(x,t)=pi(x,t)+pb(x,t) and j(Xt)=ji(x,t)+jb(x,t) are the total charge and current

densities , and pi and Pb are the ion and beam electron charge densities in the sheath.

Since the sheath/plasma boundary is sharp, no plasma electrons are in the sheath so that Je

and p. are both zero there. If Eq. (5) is differentiated with respect to time and Eq. (4) is

used to eliminate ap / dt, one obtains

D- [co-- + j(x, t)] = 0 . (6)
Sat,

Therefore, the quantity in brackets is independent of the spatial coordinate and is uniform

across the sheath. To fix the constant, the quantity inside the brackets is evaluated at the

cathode (x=O) where the electric field is zero by virtue of space-charge limited electron

emission. The result is

DE
0 '7 + j(x,t) = j(o0,t), (7)at



where j(O,t)=ji(O,t)+jb(O,t) is the total current density at the cathode supplied by an

external circuit. This last equation states that at every point inside the sheath the

displacement current and conduction current must combine to give the current supplied

by the external source.

Since the plasma electrons shield the sheath field from the bulk plasma, the electric

field at the sheath edge, E(xst), is zero for all time. Therefore, it is possible to write

dE(x,,t) 0dE0dt(8)
dt

To derive an equation for k,, the time derivative in the last equation is expanded into its

convective form

0E(x, t) 8 E(xt) 0 =0. (9)a' t 0 xS

Using Gauss's law to eliminate the spatial derivative of the electric field, an expression

for the displicement current is given by

DE(x,,t)_
CO xht) = -Pss, (10)

where p,=pi(xSt)+pb(x,,t) is the net charge density just inside the sheath. Since the bulk

plasma is assumed to be charge neutral, pi+Pb+Pc=O inside the plasma. This assumption

implies that the bulk plasma is field free, so that beam electrons stream freely through the

plasma. Therefore, the beam density inside the plasma does not change from its value at

the sheath/plasma boundary and the uniform plasma electron charge density is given by

PC = -PS (11)

Equations (10) and (11) show that the source of the non-equilibrium electric field at the

sheath/plasma boundary is the motion of the plasma electrons.
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If Eq. (7) is used to eliminate the displacement current, then Eq. (10) becomes

Ji(O,t)=ji(xs,t)-[pi(xS,t)+pb(Xs, t)]Is +jb(Xs,t)-jb(O,t), (12)

where the ion and electron beam contributions to the total charge and current density

have been separated. From the continuity equation for electrons, the difference between

the electron current density at the sheath edge and the cathode can be expressed as

Aib = ib(xst)- ib(Ot)=f-y-dx. (13)

Substituting this result into Eq. (12) and using the known plasma conditions at the sheath

edge (pi(xs,t) = Zen., ji (xs ,t) = -Zenou o ) gives

I10,0) = Zenou o +ZenOS+pb(xs,t)ks + 03 a-t dx, (14)

where ji(0,t)1 =-Ji (0,t) has been used since ji(0,t) is negative. An alternate form of

Eq. (14) can be derived by noting that the last two terms form an exact time differential

giving the following more compact expression

Iji(0,t)I= Zen~u,+Zen0 *+ pb(xt)dx. (15)dt f

Equation (15) shows that sheath growth is affected not only by the difference between

the ion current density at the two ends of the sheath, IJi (0,t) -ZenoU, but also by the

changing emitted electron charge as the sheath grows. Thus, even when the ion current

density is uniform in the sheath, the sheath will still grow if the emitted electron charge

in the sheath increases. A comparison of Eqs. (3) and (15) shows that previous gap

opening formulas are recovered provided j, in Eq. (3) is interpreted as the ion current

density at the cathode and the time rate of change of the total emitted electron charge in

10



the sheath is ignored. Note that Eq. (15) can be also be derived directly from the ion

continuity equation and by recognizing that Gauss's law implies that, when the electric

field vanishes at both ends of the sheath, the net charge in the sheath is zero. Therefore,

Eq. (15) can also be interpreted as a statement of ion continuity in the dynamic sheath.

When the electron current is increasing, the rate at which electron charge is

supplied to the sheath is negative. Therefore, Eq. (15) shows that electron emission leads

to sheath growth that is larger than that predicted by Eq. (3). As an illustration of the

importance of the emitted electrons, consider a dynamic bipolar sheath in the ion matrix

limit (i.e. x<<r). In this case one expects the sheath electric field to have little affect on

the ion trajectories so that the difference between the ion current density at the sheath

edge and the cathode is small (i.e. Iji(0,t)J = Zen~uo). If DPb /t in Eq. (14) were set to

zero, or if the rate of change of the total sheath electron charge in Eq. (15) were ignored,

ks would be incorrectly predicted to be zero. Thus, the inclusion of the evolution of the

emitted electron charge in the sheath growth equation adds important new physics which

has not been treated previously. Another new feature of these equations is the possibility

of singular sheath growth because of cancellation of the ion and electror, charge density

at the sheath/plasma boundary. In Eq. (14), if Zenou o + pb(xs,t) appioaches zero, k.

can become very large, provided the other terms in the equation do not also vanish. This

singularity, as well as the importance of the last terms of Eqs. (14) and (15), will be

discussed in more detail in Sec. VII.

III. A Generalized Current Density Relationship.

In the introduction, some of the main assumptions and limitations of previous

dynamic sheath models have been described. In this section, a generalization of the

Child-Langmuir current density ratio, Eq. (2), is derived for the case where ions are not

in equilibrium. This generalization identifies regimes where ion inertia effects may be
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important and is useful in interpreting the numerical results presented in Sec. VII. The

important assumptions of this se,.:tion include: energy conservation for beam electrons,

that the electric field vanishes at both ends of the sheath, and that the electron beam

current density is nearly uniform.

Non-equilibrium ion behavior in dynamic plasma sheaths can be described by the

hydrodynamic equations

Dp +.LI= 0, (16)at ax
and,

ovi  avi  ZeE--- + vi T = (17)
at 'x mi

The electric field, E, is computed from Gauss's law, Eq. (5).

Since changes in the sheath electric field are assumed to occur slowly enough for

electrons to equilibrate, beam electron dynamics can be treated by a sequence of quasi-

steady states. In quasi-steady state, the momentum transfer equation for beam electrons

implies their energy is conserved across the sheath. This condition is expressed as

'y(x,t)- e(x,t) (18)

where y(x,t) is the relativistic mass factor for the beam electrons, c is the speed of light,

and (x,t) is the electric potential. When inductive fields due to rising sheath currents are

negligible, the potential can be related to the electric field by

E= MC 2 ay .(19)
ax e ax
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The electron charge density in the sheath can be expressed in terms of the beam

current density and the relativistic mass factor as

Pb(x,t) = -I(t)i Y(x, (20)
Vb(x,t) c Vy2(Xt)-I (

where vb(x,t) is the beam electron fluid velocity. Both in earlier sheath models and in the

work presented in this paper, this equation is used to estimate the emitted electron charge

density in the sheath. In deriving Eq. (20), it has been assumed that the electron current

density is spatially uniform, even though both the electron current density and the

potential are allowed to vary in time so that, in general,

IPb - {-jb(t) -- =- 0 . (21)

Despite this inconsistency with the electron continuity equation, Eq. (20) is a good

estimate of the electron charge density as long as the spatial non-uniformity of Jb dictated

by Eq. (21) is small compared with Jb" This point reflects back to the sheath equations of

Sec. II. There the term Ajb of Eq. (13), and implicitly contained in Eq. (14), was

introduced as an important contributor to the sheath opening equation in the ion matrix

limit. Thus, spatial non-uniformities in Jb are assumed insignificant in estimating the

electron charge density of Eq. (20), while they may contribute significantly to the sheath

growth predicted by Eq. (14). This apparent contradiction is resolved by comparing lAjbl

with the other terms in the respective equations. In Eq. (14), 1Ajb should be compared

with IAjjl=jj(0,t)-Zenouol, while in Eq. (20), it should be compared with Ijb1. Since

Ijb(t)l is usua'ly much greater than IAj-I (see Eq. (2)), lAjbl can be important to sheath

growth without significantly disturbing the density estimate.
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The method used to develop a non-equilibrium, time dependent version of the

Child-Langmuir current density ratio for dynamic bipolar sheaths is similar to one used

by Kadish et. al 8, except that emitted electrons are included. The fundamental equation

can be derived by multiplying Eq. (16) by vi, Eq. (17) by Pi, and adding. The result is

aj. +(jiv 1) = Ze piE. (22)
ot O x m i

If Gauss's law [Eq. (5)] is used to eliminate pi,and Jb is assumed uniform, Eq. (22) can be

written as

-' " + [JiV - Ze EE22mi +1 )C-e (y2-- 1)1/2 0=0, (23)
Ox L 2mi 0  Mi

where Eqs. (19) and (20) have been used to eliminate the product pbE. Spatially

integrating across the sheath and using the boundary conditions on the electric field, this

last equation becomes

___ (2_/2 X aj.
(0, = I)--i +dx. (24)

In Eq. (24), the additional boundary conditions of vi(x,,t) = -uo, y(x=0,t) = I and yKx,,t) =

'o(t) = l+eV,(t)/mc 2 have been used. From Eq. (18) it is seen that the boundary

conditions on y are consistent with the boundary conditions on namely, 4(0,t)=0 and

,(x ,t)=V,(t). The ion momentum transfer equation [Eq. (17)] can be used to eliminate

the ion velocity at the cathode in Eq. (24). To do this, Eqs. (17) and (19) are combined

to give

-(mjv) + - lmivi + Zmec2 (y- 1) =0. (25)
at x2 J
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Spatially integrating this last equation yields an expression for the ion velocity in the

sheath,

v1/2 a(mv) dx 1/2
vi(xt) =- 2 e J[Y. + ]1/2 + E3 , (26)

where the parameter YF miu2/2ZMC 2 has been introduced. Equation (24) and

Eq.(26) evaluated at x = 0 describe a relationship between the electron and ion current

densities in the sheath and the potential drop across the sheath, and may be viewed as the

dynamic analog of Eq. (2). Given the importance of the term ji(0,t) in Eq. (14) for sheath

opening, approximations to Eqs. (24) and (26) will be examined in the remainder of this

section in order to understand their physical significance in the ion inertial regime.

In earlier models, energy conservation for the ions across the sheath was assumed.

This amounts to the neglect of the term in Eq. (26) involving the integration compared

with unity. When this assumption is valid, Eq. (26) becomes

_ Zme )1/2

vi(x,t) = J [yo(t)=+YF - (xt)]1 /2 . (27)

As pointed out in the introduction, the assumption of energy conservation for ions across

the sheath is questionable when sheath dynamics evolves on a time scale comparable

with, or faster than, that on which ions can respond.

In order to investigate when ion inertia effects may be important, Eq. (24) is

examined to determine the regime where the ion current density approaches the

equilibrium bipolar result. In the process, an approximate form of Eq. (24) is derived.

To do this, Eq. (26) is expanded to first order by assuming that the integral term is small

15



compared with unity. This estimate of the ion velocity is then substituted in Eq. (24) to

give

B .Pt_ (mi / 2 Z n , )
/  I rx ~I. 3(F2[Ji(O,t)-ji(Xs,,t)]

ji(0,t)(mi / 2Zm,) 1 rs-- 8
(3(o(t) + 1F - 1)1/ 2 [(yo(t)+YF -1)I/2 _-y/2] 2  (28)

where jiP(t) is the time-dependent Child-Langmuir bipolar space-charge limited current

density defined by

it (t)= -Ijb (t)l- 1 / (329) ! I/
(3(it)2) / 2 1[(o ) + ( ) ((t) 1)/2  . (29)

In steady state, Eq. (28) reduces to the equilibrium bipolar density formula [Eq. (29)]

which is both relativistically correct and hicludes an initial ion injection velocity.

Equation (29) is the quasi-static generalization of the bipolar current ratio and reduces to

Eq. (2) in the limit as y --> 1 and uo --- 0. Equation (28) demonstrates that

ji(0,t) = jiP(t), provided that the sum of the last three terms on the right hand side is

small compared with jfP(t). In the following paragraphs, first order corrections to each

of the last three terms on the right hand side of Eq. (28) will be analyzed separately to

examine the validity of the approximation ji (0, t) = jiP(t).

To estimate the importance of the second term on the right of Eq. (28), assume that

the ion current density is approximately uniform so that ji(x,t)_jP(t). In this case the

spatial integration of that term can be approximated by

X a j _ djPPX' --idx -- x. d i- -  (30)

ot dt
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Using this approximation in Eq. (28), it is seen that the second term can be neglected

when

-B )/2 I)1 IS

1 dj P  _ c ( 2Zmt [(Yo+YF_ - - . (31)
-- m*B)L-o+YF1) '!ji- (31

Jil dt xS , mi

Therefore, the first conclusion to be made about ion dynamics in plasma sheaths is that

the second term on the right of Eq. (28) is negligible as long as changes in the ion current

density occur more siowly than ri. It can be shown from Eq. (27) that ci = x, / v i (0, t0I

when y, is small compared with (yo-1). Under this condition ri can be interpreted as a

lower bound on the ion transit time, since lvi(O,t)I is the maximum speed of the

accelerating ions.

Next, the importance of the third term on the right hand side of Eq. (28) is

considered. This term can be ignored only when it is small compared with j P(t),

placing limitations on the degree of non-uniformity in the ion current density which can

be toklrated before the approximation jj(O,t)= jP(t) breaks down. Using Eq. (15)

from Sec. H, this limitation can be expressed as

no 1 d JX" Pb(X,t) dx]
SZe , +- dx, <<'Ti"  (32)

where ri is defined in Eq. (31). Therefore, the second conclusion to be made about ion

dynamics in bipolar sheaths is that the third term in Eq. (28) is negligible when changes

in either the sheath size or the amount of emitted electron space charge supplied to the

sheath occur on a time scale which is slow compared with ,i

The importance of a non-equilibrium ion fluid velocity can be estimated from the

relative size of the last term on the right hand side of Eq. (28) compared with jiP(t).
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Using the ion conservation of energy equation, the last term of Eq. (28) can be ignored

when

fx, t1/2 dxl
f~Ot 1J0  i(t)+YF-Y(x't] 15(3

ji(t) [ o (t) + YF _ 1]f2

The left hand side of the last inequality is related to the time scale for changes in the

potential distribution. Therefore, the third conclusion to be made about ion dynamics in

bipolar sheaths is that the fourth term is negligible when changes in the potential

distribution occur on a time scale which is slower than Ti.

The results of this section show that, when ti is small compared with the time scale

for changes in the system parameters, then the approximation ji(0,t)= jP(t) is good

and ion inertia effects are not important. However, the converse is not necessarily true.

Large values of 'ti do not necessarily mean that ji(0,t) = jiP(t) is a bad approximation

since cancellation between the terms in Eq. (29) can occur in some circumstances. In

Sec. VII, examples of this cancellation will be shown. Despite these caveats, 'ti is often a

good indicator of when the approximation ji(0,t)= jPPe(t) breaks down and ion inertia

effects are important. This is expected because tj is related to the ion transit time. When

the changes described in Eqs. (31)-(33) occur on a time scale comparable to or faster

than ri, non-equilibrium ion behavior may have a significant effect on the evolution of

dynamic bipolar sheaths. In this case, an accurate treatment of ion dynamics is needed.

IV. Child-Langmuir Equation for Dynamic Sheaths

In this brief section, some of the subtleties associated with calculating y(x,t) are

discussed. Since y is related to 4 through Eq. (18), this is equivalent to solving the
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relativistic version of Poisson's equation. The resulting solution, evaluated at x, will

provide the version of Eq. (1) that will be used in later sections. This new equation will

be the equivalent of the Child-Langmuir equation for dynamic bipolar space charge

limited flow. To calculate the potential, the electron and ion charge densities in the

system must be determined. When the electrons can be assumed to evolve in a series of

quasi-steady-states, Eq. (20) is a reasonable estimate for the electron density. Combining

Eqs. (5), (19) and (20), an equation for y(x,t) can be written as

a 2 y _( e  )F 7YlJb(t)LI-cpi(x t)  (34)

where the boundary conditions on y(x,t) are given in the text following Eq. (24). To

ensure that the electric field vanish at both ends of the sheath, an additional requirement

on Eq. (34) is that dy / ax be zero at the cathode and the sheath/plasma boundary.

Given j,(t), an expression for pi(x,t) must be given to completely determine y(x,t).

In the linit of inertia-less ions ( i.e. as mi ---> 0, or t i << r ), the ion current density is

uniform except for a small region near the sheath/plasma boundary. If this region of

non-equilibrium ion behavior is small compared with the sheath size, then pi(x,t) is well

approximated by ji / vi (x, t). Furthermore, in this case, energy conservation for ions is a

good assumption, so that Eq. (27) can be used to express vi as a function of y(x,t). This

will be the approach taken in the next section. In the limit of infinitely massive ions (i.e.

mi -, or i >>r. ), the ion matrix model is appropriate with pi = constant. In Sec. VI,

the intent is to treat the dynamic regime between these two limits where it is difficult to

write an analytic expression for pi. In this regime where ion inertia effects are

pronounced, a PIC treatment of the ions is a convenient method for computing pi for use

in the numerical solution of Eq. (34).
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V. The Modified Bipolar Model

In Sec. If, an equation was developed relating the motion of the sheath/plasma

boundary, the ion current density, and the time rate of change of the emitted electron

charge in the sheath. The fundamental result of that section is given in Eq. (14). This

equation illustrates the limitations of Eq. (3) and reveals new physics involving the role

of emitted electrons in dynamic plasma sheaths. In Sec. III a more general version of Eq.

(2), the bipolar current density ratio, was developed. The role of ion inertia was

examined in detail and conditions on the validity of treating ion dynamics by a sequence

of quasi-steady states were developed. The limitations of a quasi-steady state treatment

of ion dynamics are summarized by the three inequalities given in Eqs. (31), (32), and

(33). Several prescriptions for deteimining the ion charge density for dynamic sheaths

was given in the last section. In this section ion dynamics is modeled by a sequence of

quasi-steady-states without a priori justification.

First, the sheath opening formula, Eq. (2), is modified by including the second to

last term of Eq. (14) and solving for is to yield,

= Jij(O,t)l- Zenu°. (35)
Zen, + Pb (xs, t)

In Eq. (35), the Ajb term of Eq. (14) has been assumed to be negligible compared with

the remaining terms. In the examples studied in Sec. VII, this will shown to be a good

approximation in certain cases, and a significant improvement over Eq. (2) in all cases.

Note that Eq. (35) allows the possibility of singular sheath growth when Pb = -Zen.,

resulting in very rapid sheath growth. To obtain solutions to Eq. (35), an expression for

j ,(O,t) must be found. The modified bipolar model assumes that the ion current density is

uniform and that ions have sufficient time to relax to equilibrium. Then in keeping with

the steady-state limit of Eq. (28),
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ji(x,t) ji(0,t) = jp(t), (36)

where x < x. and ji P is given by Eq. (29).

To calculate jrP, Eq.(34) must be solved for y0 (t) which, in turn, requires an

expression for pi(x,t). In the present quasi-equilibrium ion model, ions obey energy

conservation, so pi(x,t) can be written as

Pi (X,t) = [a ( m,] (m/2Zm )1/2  (7
C [lo(t)+YF _I(x.t)]1/2

where yr' is a parameter determined by the initial ion velocity and is defined after Eq.

(26). The main assumptions built into Eq. (37) are conservation of ion energy and

uniform ion current density in the sheath. These assumptions are not strictly correct

since Eq. (26) explicitly shows that ion energy is not conserved when ion inertia effects

are important, and Eq. (35) explicitly allows the ion current densities at the cathode and

sheath/plasma boundary to be different in dynamic bipolar sheaths. One consequence of

these assumptions is that Eq. (37) overestimates the ion charge density at the

sheath/plasma boundary whenever ]jiP(t) exceeds the initial ion flux ZenoU0. In Sec.

VI, it will be seen that IjiP (t) is generally much larger than ZenoUo. For thesereasons,

Eq. (37) does not provide an accurate estimate of the ion charge density near the

sheath/plasma boundary. However, when changes in the sheath parameters are

reasonably slow compared with ri, non-equilibrium ion behavior can be confined to a

small spatial region very close to the sheath/plasma boundary. In this case, Eq. (37) can

still provide a reasonable estimate of the ion charge density over most of the sheath and

hence produce a good estimate of y(x,t) when used in Eq. (34). This point will be

illustrated when the results of this model are given in Sec. VII.
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Substituting Eq. (37) into Eq. (34) and spatially integrating once, the differential

equation for y(x,t) becomes

\1/2

ay 2e 1 .iJb(t)I(y 2  1)/2 -jiP(t)1(2m/Zm )i 2
ax -- C om ec 3

×[( (t) +YF - 1)1/2 -(yo(t) + F - )1/2 ]1/2, (38)

-BP

where the relationship between jb(t) and ji (t) given by Eq. (29) ensures that the

electric field vanishes at the sheath/plasma boundary. In general, Eq. (38) has no closed

form solution but can be integrated numerically and iterated to find the solution which

satisfies the boundary conditions on y. The numerical solution of Eq. (38) together with

Eqs. (18) and (29) provides a relationship between the voltage drop across the sheath and

the electron current density and is the analog of Eq. (1).

In concluding this section, the equations analogous to Eqs. (1) - (3) used in the

modified bipolar model are summarized. Equation (38), together with the its boundary

conditions is the analog of Eq. (1). Equation (38) incorporates the added complexity of

relativistic considerations and an initial ion velocity. The assumption in Eq. (36) that

ji(0,t) = jiP(t) is the relativistic version of the bipolar current density ratio given in Eq.

(2) and is used in Eq. (37) to provide an estimate of the ion density. Motion of the

sheath/plasma boundary is provided by Eq. (35) which is the analog of Eq. (3). Once

jb(t) is specified, Eqs. (35), (36) and (38) can be solved as a sequence of quasi-steady

states in much the same way as was done previously with Eqs. (1)-(3). In addition to the

specification of plasma parameters, the main input to the modified bipolar model is jb(t).

If the sheath is driven by an external circuit then, by assuming that current is continuous

across the cathode surface, the time dependence of jb(t) can be determined directly from

the current provided by the external circuit and the ion current density at the cathode. In
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this model and the one of Sec. VI, the added complexity of a driving circuit is avoided by

assuming a known time dependence for jb(t). This assumption is considered adequate

for the purpose of demonstrating the role of electron and ion dynamics in non-

equilibrium bipolar sheaths. The results of calculations using the modified bipolar sheath

model are presented in Sec. VII together with the results of the numerical model

described in the next section. It will be seen that despite the many questionable

assumptions built into it, the model produces significantly better agreement with the

results of the numerical model than earlier approaches.

VI. Dynamic Sheath Opening Based On Numerical Simulation

In previous s. .tions, ion dynamics are treated by a sequence of quasi-steady-states.

The numerical model for sheath opening, called PIC/CLO, calculates ion dynamics by

the particle-in-cell method' 9 . As with the analytic modeling, the plasma region outside

the sheath between the sheath edge and the anode is not treated in any detail except as a

source of ions as the plasma electrons recede. As the sheath grows, it is assumed that a

uniform background of ion density is available to it at the sheath/plasma boundary.

Beam electrons are assumed to evolve through a sequence of quasi-equilibrium states, so

that Eq.(20) is used as an approximation for their charge density. In using this estimate

for Pb(X,t), the models used both in the past and in this paper assume electron energy

conservation and uniform electron current density even though the electric field and

electron charge density are time dependent. In order to estimate the errors associated

with these assumptions, diagnostics were included in PIC/CLO to measure the degree to

which electron continuity and energy conservation are violated. These errors are less

than 1% in all but the most extreme case described in this paper, where it grows to about

6%.
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The ion density in PIC/CLO is found by summing the charge contributions on the

mesh of each of the particles using triangular shape factors. Equation (34) is integrated

numerically to find y using the boundary conditions that the electric field vanish at the

cathode, and that y(x = O,t) = 1. The plasma/sheath boundary is defined by the position

where the electric field returns to zero. Given y(x,t) everywhere in the sheath, the

electric field is found from Eq. (19) and used to push each of the macroparticles in the

ion equation of motion,

mi dt i = ZeE(x,t). (39)

cit

The ion distribution is initially uniform, and all ions have an initial velocity -uo. Only

the ions in the sheath are accelerated according to Eq. (39), while ions outside of the

sheath move ballistically with velocity -uo since E = 0 in the plasma. Input to PIC/CLO

consists of the initial ion density and injection ,elocity, and the time dependent electron

current density carried by the sheath. Output from PIC/CLO includes the evolving

sheath size, and related time dependent quantities such as the sheath potential, the

electron density at the sheath/plasma boundary, and the ion current density at the

cathode. The numerical model presented here is similar to the one originally used by

Sander4 to examine ion dynamics in ion sheaths, except that electron emission is

included. It improves on the modified bipolar sheath model described in Sec. V by

including a more accurate treatment of ion dynamics and of the effect of the time-varying

electron charge in the sheath. Except under extreme conditions, where numerical errois

come into play, PIC/CLO obeys the full hydrodynamic relation, Eq. (24), and the sheath

opening equation, Eq. (14).

VII. Results

24



In this section, the results of the computational model outlined in Sec. VI are

compared with the analytic model described in Sec. V and with earlier treatments of

sheath dynamics. Results are given for five cases summarized in Table I, and selected

for their relevance to PFD and PEOS theory and experiment. In addition to displaying

the characteristics of dynamic sheaths, results are chosen to demonstrate the points made

in Secs. Il-V such as: the accuracy of the modified bipolar approximation for the ion

current density given in Eq. (36), the effect of ion inertia, and the importance of

including the electron charge density terms in Eq. (14) to model sheath growth.

In all five cases the ion species used is doubly ionized carbon. The cases vary only

in the initial plasma density, injection velocity, and rate of electron current density rise.

As seen in Table I, two ion densities are used, 1012 cm-3 , and 1013 cm-3 . The injection

velocity associated with all 1012 cm-3 cases is 10 cm/ps, while the injection velocity for

all 101s cm-3 cases is I cm/ps. These velocities were chosen so that the ion flux in all

cases is identical, thus allowing fairer comparison between cases in which the driven

electron current densities are the same, but the ion densities differ.

The simulations were all started with a small but non-zero initial beam current

density, j. = -336 A/cm 2. This corresponds to the simple bipolar value, Eq. (2), using the

injected ion current density, -Zenou o = -3.2 A/cm 2. In the examples shown here, the

beam electron current density is assumed to rise linearly with time and take the form

jb(t) = Jo +t d- , (40)
dt

where dj/dt is the fixed rate of current density rise listed in Table I in each case. For the

first two cases, a 1012 cm-3 , and 1013 cm "3 plasma is driven with an electron current

density that rises at the rate of -0.1 kA/cm 2 -ns. In the next two cases these same two

densities are driven at the rate of -1 kA/cm 2 -ns. In the fifth case, a 1012 cm "3 plasma is
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driven at a rate of -4 kA/cm2 -ns. Except in cases 4 and 5, the simulations are run for a

total of 10 ns. Cases 4 and 5 are stopped at earlier times to avoid errors associated with

rapid sheath growth. In Table I, the stopping time in each case is shown in the row

labelled to.

The first four problems were chosen for their relevance to plasma filled diode

experiments, where a 5 cm radius diode might be expected to conduct a 1 MA pulse that

rises in about 10 ns. However, because magnetic effects are neglected in this (one

dimensional) treatment, the results presented here strictly apply when the critical current

is not exceeded. When the critical current is exceeded, it is assumed that one-

dimensional flow is maintained through the introduction of a strong external magnetic

field in the direction of the electron flow. The fifth case examined in this paper is

intended to show the extremes of behavior predicted in the present model. It is also in a

regime relevant to 2 1/2 dimensional simulations of a short conduction time (50-100ns)

PEOS. These simulations feature an intense current channel which migrates axially

along the cathode, producing regions where the electron current density is largely normal

to the cathode and rises rapidly to high values20 . In these 2 1/2-D cylindrical simulations,

radial beam current flow is maintained in the presence of a strong azimuthal magnetic

field as a result of electrostatic fields transverse to the electron flow. These axial electric

fields allow laminar ExB electron flow in the direction normal to the cathode.

In each of the five cases, the sheath size found in PIC/CLO is compared with earlier

models and with the modified bipolar model presented in Sec. V. In order to understand

the physical reasons for the differences between the models, analysis of the results will

be given in terms of the ideas introduced in Secs. II-IV. It will be seen that the

additional terms in Eq. (14) associated with the changing electron density in the sheath

produce larger sheaths than predicted by earlier models. In some cases, the extra terms

of Eq. (14) become so important that the rate of sheath growth can become too large to
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be resolved accurately by PIC/CLO. In regimes of rapid sheath growth, ions cannot

equilibrate, and the use of the bipolar estimate for the ion current density [Eq. (36)]

becomes increasingly inaccurate.

In comparing results from PIC/CLO and the modified bipolar model with results

from earlier models, a refined version of the model provided by Eqs. (1) - (3) is used to

represent earlier sheath opening treatments. This refinement modifies Eqs. (1) - (3) to

include the non-zero ion injection velocities and relativistic voltages allowed here. The

extension of earlier treatments is identical to the modified bipolar model of Sec. V,

except that the original sheath opening equation, Eq. (3) is used rather than Eq. (35).

Explicitly stated, the model used to represent earlier treatments employs the combination

of Eqs. (38), (36), and (3), with jP(t) given by Eq. (29), and with the usual boundary

conditions on y(xt). Like PIC/CLO and the modified bipolar model, this model is driven

by jb(t) and output includes the time dependent sheath size and potential.

Unless otherwise specified, in each of the figures below curve (a) represents the

PIC/CLO result, curve (b) the modified bipolar model, and curve (c) the earlier

treatments. When a curve is labelled with a number rather than a letter, it represents the

output from one of the five cases listed in Table I. Tnus a curve labelled 4b means that

the modified bipolar model has been applied to case 4 hi order to produce the result

displayed.

First the electrical chararcteristics of each case will be described. Summaries of

these characteristics from PIC/CLO, together with the sheath sizes at to are given in

Table I. The growth of the sheath potential in time is shown in Figs. 2 -6 for each of the

five cases. Also shown is the driving beam current density in each case. The three

potential plots in eah figure represent the three models discussed in this work. As can

be seen in the figures, very good agreement is generally found between the modified
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bipolar model and PIC/CLO. In cases 1 - 3, discrepancies of 20-30% exist between

PIC/CLO and the earlier treatments. In regimes of lower density, higher rate of current

density rise such as cases 4 and 5, differences of factors between 4 and 10 become

apparent, as seen in Figs. 5 and 6. The differences between PIC/CLO and earlier models

are also demonstrated in Fig. 7, where the time dependent ratio, (x,, t)/Jb (t) is plotted

for cases 2 and 5 in units of 02-cm 2.

Sheath growth for each of the five cases is shown in Figs. 8 - 12. The same

comments made above for the potential growth apply here, where differences of

approximately 25% exist between PIC/CLO and the earlier models in the higher density

regimes, but large discrepancies (factors of 4 - 10) are seen in lower density, higher

current density rise regimes (i.e. cases 4 and 5). The modified bipolar model again

improves substantially on the earlier models. Curve (a) in Fig. 12 shows oscillations that

are the result of numerical noise and that should not be taken literally.

A summary of how the models differ in their treatment of sheath growth illustrates

why this rapid sheath growth occurs in the new models presented here. Starting with

earlier treatments, the sheath size was determined by dropping the last two terms of Eq.

(14) and assuming that ji(0,t) = jrP(t), so that,

X Zeno - uo . (41)

Zen o

The modified bipolar model improves on this by dropping only the last term of Eq. (14),

giving Eq. (35), with ji(0,t) = ji'P(t). Finally, PIC/CLO retains all the terms of Eq. (14)

and calculates ji(0,t) independently of jiP (t), giving,

= IJi (0, t)l - Zenouo + AJb (42)Zen, + pb (x0,t) '
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with Ajb given by Eq. (13). As demonstrated in Figs. 8 - 12, PIC/CLO and the modified

bipolar models always show larger sheath giowth than earlier models, sometimes by an

order of magnitude. The reason for this is largely because of the Pb(X,,t) term in the

denominator of Eq. (42). Because Pb is negative, the effect of this term on sheath growth

is to reduce the denominator of Eqs. (42) and (35) compared with that of Eq. (41), and

thus increase i,. Another reason for larger sheath growth is the term Ajb, which is

always positive for the cases here with rising IJb.

The next four figures depict the spatial profiles of the potential and number

densities comparing cases 2 and 5 for the PIC/CLO and modified bipolar models. In

these figures, nb is the beam density and Znj is the ion charge state times the ion density.

Figure 13 shows the PIC/CLO results for case 2 at t = 10 ns. . This should be compared

with the modified bipolar results for the same case and time in Fig. 14. The largest

difference is between the estimates of the ion density at the sheath/plasma boundary.

Because the region of disagreement in the ion density is small, the potentials calculated

by the two models agree very well. Sheath growth in case 2 is relatively slow, giving

good agreement between the models. With rapid sheath growth in case 5, larger

differences are found. In Fig. 15, the potential and density profiles from PIC/CLO are

shown for case 5 at t = 2 ns. These can be compared with the modified bipolar model in

Fig. 16, where the ion density plot is truncated for clarity. At the last data point, x = x3,

Zn, = 7.1 x 1013 cm "3 . Despite large discrepancies in the sheath size and ion density

near the sheath/plasma boundary, the modified bipolar model provides a fairly good

estimate (within 25%) of the sheath potential.

Figure 15 demonstrates that large sheath growth is seen in cases when

Pb (x, ,t) - -Zen.. Further illustration of this point, and a comparison among cases is

given in Fig. 17, where the time dependence of the beam density, nb(xS,t) is plotted for

the three 1012 cm -3 cases, 2, 4 and 5. The curves are labelled by their case numbers and
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by their rates of beam current density rise. If the traces were to reach Zno = 2 x 1012

cm "3, the sheath growth rate predicted by either Eqs. (42) or (35) would be infimite.

Table I gives the value of nb(xS) at the stopping time for all five cases. This number

should be compared with Zn0 for the case in question.

An explanation of why Pb (x. ,t) --> -Zen. in some cases can understood from the

following argument. If it is assumed that the ion charge density is roughly uniform, Eq.

(34) can be integrated once to yield an expression related to the electric field through Eq.

(19). The boundary condition that the electric field vanish at the sheath edge then gives

Jb = -noeZc 'y"-- (43)

This result relates the beam current density to the sheath voltage in the ion matrix limit.

Using Eq. (20) to relate jb and Pb, an expression is obtained for the electron density at the

sheath edge,

Pb(x,)=-noeZ ' (44)
"o +1

In the non-relativistic limit, the beam charge density approaches noeZ/2, giving a factor

of two increase in sheath growth over that predicted by Eq. (41). Equation (44) shows

that in the limit of large sheath potential (i.e. y >> 1), Pb (x8 ,t) - -Zen., and Eq. (42)

would predict explosive sheath growth. This result shows that explosive sheath growth is

a relativistic effect on the beam electron density. Although the resulting sheath growth

singularity is quite interesting, it cannot be taken too literally. First of all, the large beam

density in this limit almost removes the distinction between the sheath and plasma.

Secondly, there is the question of electron inertia effects. In the two examples above that

exhibited this singularity, the simulations were stopped before such effects became

important. If they had been allowed to continue, the sheath velocity would become so

30



extreme that electron energy conservation would no longer be conserved, and the

electron current density would be strongly non-uniform. In this limit, Eq. (20) would no

longer be a good estimate of the electron charge density and the models considered here

would break down. On this issue, Table I can be used to estimate this error. Dividing

Ajb by Iib(to)I gives the degree of non-uniformity in the electron current density for each

case. For case 1, this ratio is 6 x 104 , while for case 5 it is 6.3 x 10.2 at t = to.

In the next three pairs of figures, further comparisons of cases 2 and 5 are made to

demonstrate the effects of ion inertia. In Figs. 18 and 19, spatial profiles of the ion

current density are shown for these two cases. In each case, the modified bipolar model

overestimates j(x)l, especially near x3, leading to the error in pi mentioned in the

discussion of Figs. 14 and 16. This error is also implicitly made in earlier models of

sheath growth where the ion current density is also assume uniform. Ion inertia effects

can be seen by comparing the profiles of the curves labelled (a) in these two figures. In

Fig. 18, where inertia effects are small, the ion current density predicted by PIC/CLO

rises to about 90% of the modified bipolar value at the cathode. In case 5, where the

sheath grows so rapidly that ions cannot respond and equilibrate, the current density

profile predicted by PIC/CLO rises to only about 60% of the modified bipolar value at

the cathode. Thus, it is seen that ion inertia manifests itself by reducing the magnitude of

Iji(0,t)" - Zenou. compared with Ij~l(t)l - ZertoU. According to Eqs. (42) or (35), these

results would suggest smaller sheath growth would be predicted by PIC/CLO than the

modified bipolar model. As will be shown shortly, the opposite result holds because the

addition of Ajb to Eq. (42) more than offsets any ion inertia effects. In Table I, ion

current density results are summarized for all five cases. Both jj(0,to) from PIC/CLO,

and jBP (t.) from the modified bipolar model (MBP) are tabulated. Note that .BP

from the modified bipolar model is based on the voltages predicted in that model. For

comparison, j'" (t. ) using the voltages from PIC/CLO (PIC) are also shown in Table I.
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These value of IjBP (to)l are larger than those from the modified bipolar model,

especially in cases 4 and 5. The differences between jB" (t. )(PIC) and ji(0,to) show how

far from equilibrium these solutions really are.

Time histories of ji(0,t) are shown from cases 2 and 5 in Figs. 20 and 21. As usual,

curves (a) and (b) refer to the results from PIC/CLO and the modified bipolar model

respectively. However, curve (c) in this case is not the result from earlier models, but the

last term of Eq. (42), Aib -fxo- x This term has been included in this figure

because its importance to Eq. (42) can be judged by comparing its magnitude with ji(0,t).

Figure 20 shows that, in case 2, Ajb is a small fraction of the ion current density, and that

good agreement exists between the PIC/CLO cathode ion current density and the

modified bipolar estimate. Figure 21, from case 5 shows larger differences (factors of

1.7) between the two estimates of ji(0,t), and an overwhelming contribution to Eq. (14)

from Ajb. These results support the point made earlier that ion inertia effects are offset

by the contribution of Aib to Eq. (42), producing larger sheath growth in PIC/CLO than

in the modified bipolar model. Ajb(to) is shown in Table I for each of the five cases. Its

importance to Eq. (42) can be judged by comparing its magnitude with ji(0,to)I - Zenou0.

The large values of Aib in cases 4 and 5 in concert with small values of Zen.- enb(x,,t)

produce the large sheath growth in those cases.

In an attempt to understand how ion inertial effects influence estimates of ji(0,t), the

terms of Eq. (28) from cases 2 and 5, as calculated by PIC/CLO, are plotted in Figs. 22

and 23. Curves (a) - (d) are the second, third, and fourth terms on the right of Eq. (28)

and their sum, all normalized to jPi(t). Thus, Eq. (28) would be written

ji(0,t)= j P=(t)[ -(a)-(b)-(c)]=j~v(t)[1-(d)]. Figure 22 shows that in case 2,

good agreement between ji(0,t) and jim (t) is obtained because of cancellation among the

terms. Such cancellation does not occur in case 5, as seen in Fig. 23 where curve (a)
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dominates the others. Figure 23 shows that ion inertial effects are much more important

in case 5 than in case 2. Additional support for this conclusion is given by a diagnostic

built into PIC/CLO that compares the actual vi(0,t) at the cathode with the velocity

predicted by the ion conservation of energy equation given in Eq. (27). This diagnostic

shows that Eq. (27) overestimates the actual ion velocity at the cathode by 40% in case 2,

and by a factor of 6 in case 5 at the respective stopping times in each case.

VIII. Conclusions

In this paper, the dynamic behavior of bipolar plasma sheaths has been examined.

The models presented here assume that electrons evolve in a series of quasi-equilibrium

states so that, to good approximation, electron energy is conserved and the electron

current density is uniform in the calculation of the electric field and electron charge

density. The analysis is one dimensional and magnetic field effects are neglected.

Earlier models of sheath growth share these assumptions with the present treatment. The

former models, however, assume that ions also evolve in a series of quasi-equilibria so

that the equilibrium bipolar Child-Langmuir equations hold. Equations (1) - (3) express

the resulting sheath opening dynamics. The treatment introduced here builds on earlier

methods in a three ways. First of all, analytic generalizations of Eqs. (2) and (3) are

developed, resulting in Eqs. (24) and (14). Secondly, the modified bipolar model is

developed, which retains the ion equilibrium assumptions in the calculation of the sheath

potential, but adds terms to Eq. (3) to make the sheath growth equation more consistent

with the full ion continuity equation, Eq. (14). In this way, uniform ion current density

is assumed in the potential calculation, but not in the ion continuity equation. Thirdly,

the PIC/CLO model described here drops the ion equilibrium assumptions and resolves

ion inertial effects. Sheath opening is fully consistent with the ion continuity equation,

and hence Eq. (14).
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It has been found that earlier models neglect effects that manifest themselves even

in regimes where ions dynamics can be treated as a series of quasi-equilibrium states.

This error results in underestimates of the actual sheath size and potential. in the higher

density regimes of 1013 cm-3, actual sheath sizes and potentials are about 25% higher than

earlier estimates, while at the lower density of 1012 cm "3, sheaths sizes and potentials can

be factors of 1.5 to 10 times larger than earlier models predict, depending on the rate of

rise of the driving current dexisity. The discrepancies with earlier models occur largely

because of the neglect of terms in the sheath opening equation related both to electron

charge density and to electron dynamics. Electron charge density at the sheath edge

reduces the denominator in Eq. (42) compared with Eq. (41), thus increasing x.

Electrons respond to the rising demand for current density by redistributing themselves in

the sheath in such a way that, in certain regimes, Pb (X, ,t) "- ') -Zen. and Ajb becomes

important. Thus, the inclusion of electron dynamic effects allows for the possibility of

singular sheath growth. However, extreme growth taxes the credibility of the models

employed here because electron inertia effects also become important when sheaths grow

too fast. In the results presented here, calculations have been stopped before the electron

energy conservation and continuity equations are strongly violated, but the trend toward

very rapid sheath growth is apparent.

Ion inertia effects manifest themselves by reducing the magnitude of the ion current

density in the sheath compared with the bipolar value, IjBPI, to which the ions tend in the

limit of slow sheath growth ( i.e. «ri < ). These effects were demonstrated in Figs. 18

and 19. Figure 18 is typical of the cases 1 - 3, where ion inertia effects are small and

Iji(0,t)l almost reaches Ij"PI. Figure 19 is representative of cases 4 and 5, where sheath

growth becomes so large that Iji(0,t)l reaches only about halfway between Zenouo and

IjUPI. This trend can be taken to the ion matrix limit, where j,(0,t) -- Zenou0 .

According to Eq. (42), therefore, ion inertia effects manifest themselves by reducing the
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ion current density contribution to sheath growth [the first two terms in the numerator of

Eq. (42)].

Several important effects have been left untreated in this paper. The effect of

magnetic fields and inductive electric fields should be included in future work. The

interaction of the emitted electron beam with the background plasma (producing

instabilities) or with a neutral gas (producing ionization effects) would also significantly

modify the results presented here.
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case 1 2_ 3 L4~ 5
n (xl012cm-'3 ) 10 1 10 1 1
Uo (cm/ft s) 1 10 1 10 10

I djbdt I (KA/cm 2-ns) 0.1 0.1 1.0 1.0 4.0
to (ns) 10 10 10 6.5 2

jb(to) I (KA/cm2) 1.34 1.34 10.34 6.8 8.34
x,(to) (cm) 0.024 0.37 0.21 3.2 4.0

O(x, t) (KV) 2.75 92 197 4450 4330
1 ji(O,to) I (A/cm2 ) 12.8 13.2 102 82 56

I je(t) I (A/cm 2)(MBP) 13.4 14.1 106 95.7 94.3
IjtO(t) I (A/cm 2)(PIC) 13.4 14.2 108 174 161

A~jb(t.) (A/cm 2) 0.8 2.4 11.7 123 526
nlb(x,,to) (Xl0 2cm - 3) 2.7 0.53 3.1 1.43 1.75

TABLE I. Parameters used in the five cases treated in this paper. Rows I - 5 are

input parameters , rows 6- 12 are output results. All of the results are from PIC/CLO,

except the row labelled Iji, (t.)I(MBP), which is the ion current density from the

modified bipolar model.
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TABLE CAPTION

TABLE I. Parameters used in the five cases treated in this paper. Rows I - 5 are

input parameters , rows 6- 12 are output results. All of the results are from PIC/CLO,

except the row labelled Iji (to)I(MBP), which is the ion current density from the

modified bipolar model.

FIGURE CAPTIONS

FIG. 1. Schematic of a one dimensional dynamic bipolar sheath. n. is the plasma

ion density and u. is the plasma injection speed.

FIG. 2. Current density and sheath potential histories for case I, a 1013 cm "3 plasma

driven with a beam current density rise of -0.1 KA/cm 2-ns. Labels (a), (b), and (c) refer

to the PIC/CLO, modified bipolar, and earlier models, respectively.

FIG. 3. Current density and sheath potential histories for case 2, a 1012 cm"3 plasma

driven at a rate of -0.1 KA/cm 2-ns.

FIG. 4. Current density and sheath potential histories for case 3, a 1013 cm-3 plasma

driven at a rate of -1.0 KA/cm2-ns.

FIG. 5. Current density and sheath potential histories for case 4, a 1012 cm-3 plasma

driven at a rate of -1.0 KA/cm 2-ns.

FIG. 6. Current density and sheath potential histories for case 5, a 1012 cm "3 plasma

driven at a rate of -4.0 KA/cm 2-ns.

FIG. 7. Ratio of sheath potential to beam current density for cases 2 and 5, where a

1012 cm-3 plasma is driven at a rates of -0.1 KA/cm2-ns and -4.0 KA/cm 2-ns, respectively.

Curves labelled (a) and (c) refer to the PIC/CLO and earlier models, respectively.

FIG. 8. Sheath size evolution for case 1, a 1013 cm-3 plasma driven at a rate of-0.1

KA/cm 2-ns. As before, labels (a), (b), and (c) refer to the PIC/CLO, modified bipolar,

and earlier models, respectively.
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FIG. 9. Sheath size evolution for case 2, a 1012 cm-3 plasma driven at a rate of -0.1

KA/cm 2-ns.

FIG. 10. Sheath size evolution for case 3, a 1013 cm"3 plasma driven at a rate of -

1.0 KA/crn2-ns.

FIG. 11. Sheath size evolution for case 4, a 1012 cm "3 plasma driven at a rate of -

1.0 KA/cm2-ns.

FIG. 12. Sheath size evolution for case 5, a 1012 cm-3 plasma driven at a rate of -

4.0 KA/cm 2-ns.

FIG. 13. Profiles of the potential, and electron and ion densities in the sheath at

time to = 10 ns from the PIC/CLO model for case 2, a 1012 cm-3 plasma driven at a rate of

-0.1 KA/cm 2-ns.

FIG. 14. Profiles of the potential, and electron and ion densities in the sheath at

time to = 10 ns from the modified bipolar model for case 2, a 1012 cm-3 plasma driven at a

rate of -0.1 KA/cm 2-ns.

FIG. 15. Profiles of the potential, and electron and ion densities in the sheath at

time to = 2 ns from the PIC/CLO model for case 5, a 1012 cm-3 plasma driven at a rate of

-4.0 KA/cm 2-ns.

FIG. 16. Profiles of the potential, and electron and ion densities in the sheath at

time to = 2 ns from the modified bipolar model for case 5, a 1012 cm-3 plasma driven at a

rate of -4.0 KA/cm 2-ns.

FIG. 17. History of the beam density at the sheath/plasma boundary for cases 2, 4,

and 5, where a 1012 cm- 3 plasma is driven with the rates of beam current density rise

shown.

FIG. 18. Profile of the ion current density in the sheath at to = 10 ns for case 2, a

1012 cm -- plasma driven at a rate of -0.1 KA/cm2-ns. Curves labelled (a) and (b) refer to

the PIC/CLO and the modified bipolar models respectively. The curves end at the

sheath/plasma boundary predicted by each model.
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FIG. 19. Profile of the ion current density in the sheath at t0 = 2 ns for case 5, a

1012 cm "3 plasma driven at a rate of -4.0 KA/cm 2-ns. Curves labelled (a) and (b) refer to

the PIC/CLO and the modified bipolar models respectively. The curves end at the

sheath/plasma boundary predicted by each model.

FIG. 20. Histories of the ion current density at the cathode and term Ajb of Eq. (13)

for case 2, a 1012 cm-3 plasma driven at a rate of -0.1 KA/cm2-ns. Curves (a) and (b)

refer to the PIC/CLO and modified bipolar model predictions of ji(0,t), while curve (c) is

the term Ajb from PIC/CLO.

FIG. 21. Histories of the ion current density at the cathode and term Ajb of Eq. (13)

for case 5, a 1012 cm -3 plasma driven at a rate of -4.0 KA/cm 2-ns. Curves (a) and (b)

refer to the PIC/CLO and modified bipolar model predictions of ji(0,t), while curve (c) is

the term Ajb from PIC/CLO.

FIG. 22. Histories of the three terms on the right of jBP in Eq. (28) [curves (a) -

(c)], and their sum [curve (d)], all normalized to jrP. Curves are from case 2, a 1012 cm 3

plasma driven at a rate of -0.1 KA/cm2-ns, using PIC/CLO.

FIG. 23. Histories of the three terms on the right of jBP in Eq. (28) [curves (a) -

(c)], and their sum [curve (d)], all normalized to j"P. Curves are from case 5, a 1012 cm- 3

plasma driven at a rate of -4.0 KA/cm2-ns, using PIC/CLO.
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